
Distributed Implementation of the Latent Dirichlet
Allocation on Spark

Karim Sayadi
CHArt Laboratory EA 4004

EPHE, PSL Research
University

Paris, France
karim.sayadi@

ephe.sorbonne.fr

Quang Vu Bui
CHArt Laboratory EA 4004

EPHE, PSL Research
University

Paris, France
Hue University of Science,

Vietnam
quang-

vu.bui@etu.ephe.fr

Marc Bui
CHArt Laboratory EA 4004

EPHE, PSL Research
University

Paris, France
marc.bui@

ephe.sorbonne.fr

ABSTRACT
The Latent Dirichlet Allocation (LDA) is one of the most
used topic models to discover complex semantic structure.
However, for massive corpora of text LDA can be very slow
and can require days or even months. This problem created
a particular interest in parallel solutions, like the Approx-
imate Distributed LDA (AD-LDA), where clusters of com-
puters are used to approximates the popular Gibbs sampling
used by LDA. Nevertheless, this solution has two main issues
: first, requiring local copies on each partition of the cluster
(this can be inconvenient for large datasets). Second, it is
common to have read/write memory conflicts. In this arti-
cle, we propose a new implementation of the AD-LDA algo-
rithm where we provide computation in memory and a good
communication between the processors. The implementa-
tion was made possible with the syntax of Spark. We show
empirically with a set of experimentations that our parallel
implementation with Spark has the same predictive power
as the sequential version and has a considerable speedup.
We finally document an analysis of the scalability of our im-
plementation and the super-linearity that we obtained. We
provide an open source version of our Spark LDA.

CCS Concepts
•Computing methodologies→MapReduce algorithms;
Latent variable models; •Information systems → Docu-
ment topic models;

Keywords
Latent Dirichlet Allocation; Big Data; Distributed Systems

1. INTRODUCTION

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of a national government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to al-
low others to do so, for Government purposes only.

SoICT ’16, December 08-09, 2016, Ho Chi Minh City, Viet Nam
c© 2016 ACM. ISBN 978-1-4503-4815-7/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/3011077.3011136

A significant portion of unstructured data in textual for-
mat is being collected from e-mail, social media platforms
and diverse documents type. This data is used to train dif-
ferent models that are built to process information retrieval
queries from diverse systems like modern libraries or search
engines.

In this context, probabilistic topic modeling has been ac-
tively pursued as a language model to get an analytic ab-
straction from the text. Topic modeling is a method for
analyzing quantities of unlabeled data to extract the latent
structure (i.e the topic structure). This latent structure is
represented by latent variables that we need to infer. One of
the most used topic models is the Latent Dirichlet Alloca-
tion [5] where a document is a mixture of topics and a topic
is a mixture of words. Learning the different parameters
of the latent mixtures is a problem of Bayesian inference.
Two of the approximate inference algorithms are used to
overcome this problem: The variational inference and Gibbs
sampling. The former is faster and the latter is slower but
more accurate.

In information retrieval systems we need both speed and
accuracy. However, for massive corpora of text, the itera-
tions of Gibbs sampling are extremely slow and can require
days or even months of execution time [14]. Clusters of com-
puters can resolve this problem. To this aim, we propose a
distributed version of Gibbs sampling built on Spark. Spark
is a cluster computing and data-parallel processing platform
for applications that focus on data-intensive computations.
The main idea of the proposed algorithm is to make local
copies of the parameters across the processors and synchro-
nize the global counts matrices that represent the coefficients
of LDA mixtures. The main contributions of this article are:

• We propose a parallel version of the collapsed Gibbs
sampling based on the AD-LDA. This version allows
a fast data partition and an effective synchronization
between the latent variable on different machines.

• Experiments show both the sequential Gibbs sampling
on a single CPU and the Spark cluster version with
the same predictive power.

• We demonstrate scaling to very large systems and pro-
vide an open source implementation1 of the Spark LDA

1http://gitlab.humanum.ephe.fr:82/Humanum/Humanum/

version with the different experimentations.

2. BACKGROUND

2.1 The Latent Dirichlet Allocation

wd,n

z

θθθd

φφφk

α

β

word n

document d

topic k

Figure 1: Bayesian network of the Latent Dirichlet Alloca-
tion.

Latent Dirichlet Allocation (LDA) by Blei et al. [5] is
a generative probabilistic model for collections of grouped
discrete data. Each group is described as a random mixture
over a set of latent topics where each topic is a discrete
distribution over the collection’s vocabulary.

The generative model of LDA [5] is described with the
probabilistic graphical model [9] on the left of Fig. 1. In
this LDA model, different documents d have different topic
proportions θd. In each position in the document, a topic z
is then selected from the topic proportion θd. Finally, a word
is picked from all vocabularies based on their probabilities
φk in that topic z. θd and φk are two Dirichlet distribution
with α and β as hyperparameters. We assume symmetric
Dirichlet priors with α and β having a single value.

The hyperparameters specify the nature of the priors on
θd and φk. The hyperparameter α can be interpreted as a
prior observation count of the number of times a topic z is
sampled in document d [17]. The hyperparameter β can be
interpreted as a prior observation count on the number of
times words w are sampled from a topic z [17].

As a latent variable model the inference in LDA is com-
putationally expensive. The inference in LDA is the process
of estimating the posterior distribution, which is solved with
the following equation :

p(θ, φ, z|w,α, β) =
p(θ, φ, z, w|α, β)

p(w|α, β)
(1)

As a consequence to this, approximate inference algo-
rithms, e.g Variational Inference and Gibbs Sampling are
widely used in the literature [17].

In the original LDA paper [5] Blei et. al used variational
inference. The variational inference is faster than Gibbs
sampling but, it can be biased. However, in Gibbs sampling
as the number of iteration for running the Markov Chain in-
creases the bias approaches 0. Gibbs sampling is then a more
accurate algorithm for LDA even if it is slower. Recently,

tree/master/SparkLDA

some efforts [16] were oriented to combine both methods to
yield greater speeds and accuracy but they are not applied
yet on LDA.

There are different versions of Gibbs sampling algorithm,
we have chosen to work with the collapsed version [17]. In
[13], Newmann et al. showed with empirical results that the
non-collapsed and partially collapsed sampling algorithms
converge slower than the fully collapsed. The non-collapsed
exhibit slower convergence due to strong dependencies be-
tween parameters and latent variables.

The Gibbs sampler for LDA needs to compute the proba-
bility of a topic z being assigned to a word wi, given all other
topic assignments to all other words. Somewhat more for-
mally, we are interested in computing the following posterior
up to a constant:

p(zi | z−i, α, β, w) (2)

where z−i means all topic allocations except for zi.

P (zi = j|z−i, w) ∝
nwi
−i,j + β

n
(·)
−i,j + V β

ndi
−i,j + α

ndi
−i,· +Kα

(3)

where nwi
−i,j is the number of times word wi was related to

topic j. n
(·)
−i,j is the number of times all other words were

related with topic j. ndi
−i,j is the number of times topic j

was related with document di. n
di
−i,· is the number of times

all other topics were related with document di. V is the
number of words in the vocabulary and K is the number of
topics. Those notations were taken from the work of Thomas
Griffiths and Mark Steyvers [6].

φ̂
(w)
j =

n
(w)
j + β

n
(·)
j + V β

(4)

θ̂
(d)
j =

n
(d)
j + α

n
(d)
· +Kα

(5)

Equation (4) is the bayesian estimation of the distribution of
the words in a topic. Equation (5) is the bayesian estimation
of the distribution of topics in documents.

From the equation (3) the Gibbs sampling update the
topic assignment zi in each iteration for every word in every
document. This process can become slower as the corpora of
text become bigger. It may require days or months of CPU
time to finish the iterations [14]. A natural way to solve
this problem is to divide the collection of documents across
P processor. Each processor updates the topic assignment
locally on the portion of the collection and then sends the
result to synchronize with the other processors. This is the
idea behind Approximate Distributed LDA (AD-LDA).

2.2 Approximate Distributed LDA
In the Approximate Distributed LDA model (AD-LDA)

first proposed by Newman et al. [14], a corpus is divided

on P processors, with approximately
D

P
documents on each

processor. Then, LDA is implemented on each processor,

and Gibbs sampling is simultaneously executed on each
D

P
documents to approximate a new zi from the equation (3)
for every word i in every document j in the collection of
documents.

In each iteration each processor has local copy of the
counts matrix word by topic nwk

p and the counts matrix

document by topic ndk
p in parallel. A global synchronization

described by the equation (6) and (8) is executed to have

global counts nwk and ndk.

nwk
new = nwk

old +
∑
p

(nwk
p − nwk

old) (6)

=
∑
p

nwk
p − (p− 1)nwk

old (7)

ndk
new = ndk

old +
∑
p

(ndk
p − ndk

old) (8)

=
∑
p

ndk
p − (p− 1)ndk

old (9)

There are two main issues with AD-LDA : first it needs
to store P copies of the global counts for all the processors
in parallel, this can be inconvenient for large datasets. Sec-
ond, we can have read/write memory conflicts on the global

counts nwk and ndk which can lower the prediction accuracy.
Spark provides computation in memory and therefore we

don’t need to store the global counts in parallel. We can
avoid read/write memory conflicts with broadcasting tem-

porary copies of the global counts nwk and ndk. In the next
section, we explain why we chose to work with Spark instead
of Hadoop/MapReduce and then present the algorithm of
our implementation.

3. SPARK LDA

3.1 Spark
Spark [20] is a cluster computing and data-parallel pro-

cessing platform for applications that focus on data-intensive
computations. The main component and primary abstrac-
tion in Spark is the Resilient Distributed Dataset (RDD).
An RDD is a distributed collection of elements in memory
that is both fault-tolerant (i.e. Resilient) and efficient (i.e
the operation performed on them are parallelized).

Spark automatically distributes the data contained in the
different RDDs and applies in parallel different operations
(i.e functions) defined within the so-called driver program.
The driver program contains the application (e.g Spark LDA)
main functions (e.g MCMC methods) and applies them on
the cluster.

The prominent difference between MapReduce/Hadoop
and Spark is that the former creates an acyclic data flow
graph [4] and the latter a lineage graph [20]. As soon as the
Hadoop implementation became popular, users wanted to
implement more complex applications; iterative algorithms
(e.g machine learning algorithms), interactive data mining
tools (e.g Python, R) that can not be expressed efficiently
as acyclic data flows.

In our work, we used the Gibbs sampling algorithm to
approximate the inference. This Monte Carlo algorithm de-
pends on randomness. Hadoop/MapReduce does not allow
us to have this randomness because it considers each step of
computation in the implemented application as the same no
matter where or when it runs. However, this problem can
be fixed by seeding a random number generator [12], it adds
another layer of complexity to the implementation and can

slow it down or affect the complete synchronization of the
counts of different parameters distributed on the cluster.

We chose Spark, because it is faster than Hadoop (i.e.
computation in memory), allows randomness, iterative jobs,
general programming tasks (i.e Machine Learning algorithms
are not usually built for Map Reduce tasks). We will use
three simple data abstractions provided by the Spark syn-
tax to program the clusters : the RDDs, broadcast variables
for the global counts of the different parameters in the Gibbs
sampling and the Map and Reduce implementation.

3.2 The Algorithm

Algorithm 1 Algorithm : for distributing the Latent
Dirichlet Allocation

1: procedure SparkLDA
2: RddData = sc.textFile(”textexample.txt”)
3: If FirstIteration then
4: initialize global counts at Random
5: loop For each iteration
6: Begin
7: rdd = RddData.Map ()
8: globalcounts = rdd.ReduceAndUpdate()
9: rddGlobal = globalcounts.parallelize()
10: rdd = rddGlobal.Map()
11: φ, θ = rdd.ReduceAndUpdate()
12: End
13: return φ, θ
14: end procedure

Our implementation on Spark of the LDA with collapsed
Gibbs sampling (CGS) can be considered as an extension
of the AD-LDA algorithm where we aim to provide com-
putation in memory and a good communication between
the processors to avoid read/write memory conflicts when

we synchronize the global counts nwk and ndk. Spark gen-
eralizes the MapReduce model, therefore before presenting
the overall algorithm 1, we will present what is executed on
each processor in the algorithm 2 and what is synchronized
through all the processors in the algorithm 3.

Algorithm 2 Algorithm : Mapper

1: procedure Map
2: D1, · · · , Dp = partition (Corpus(D))
3: loop For each partition do in parallel
4: Begin

5: n
wk
p = n

wk

6: n
dk
p = n

dk

7: loop For each document j and for each word i in V
8: Begin

9: Sample zij from n
wk
p and n

dk
p using CGS.

10: Get n
wk
pnew

and n
dk
pnew

from zij .

11: End
12: Get the broadcasted n

wk
and n

dk
and compute the φ

and θ equation (4) and (5).
13: End
14:
15: end procedure

The first procedure called Map described the algorithm
2, represents the instructions executed on P processors to
sample topics locally. These instructions are the parts of the
algorithm that benefit from the improvement of the system
(i.e the increase of the number of processors or memory).
First, we initialize the global counts with the synchronized
versions then we sample zij and produce new global counts
that we broadcast again to compute the distribution of top-

Figure 2: Workflow of the Spark implementation. Each iteration is executed within the Map and Reduce framework. After
the reduce application the global counts parameters nwk and ndk are broadcasted to the different replicas of the LDA model.
The log-likelihood is computed on the held-out documents after each iteration.

Algorithm 3 Algorithm : Reducer

1: procedure ReduceAndUpdate
2: nwk

new = equation (6)

3: ndk
new = equation (8)

4: broadcast(nwk
new,ndk

new)
5: θ = add(θ1...p)
6: φ = add(φ1...p)
7: end procedure

ics per document θ and the distribution of words per topic
φ.

The second procedure called ReduceAndUpdate, in the al-
gorithm 3, is executed at the end of each Gibbs sampling
iteration to synchronize the word-topic counts and to com-
pute the words per topic count matrix φ and the topic per
document count matrix θ from all the local ones in different
partitions P . The Map and Reduce procedures are executed
until convergence of the Gibbs algorithm.

Finally, the overall algorithm in Spark uses the defined
procedures Map and Reduces, shown in the algorithms 2 and
3, to perform the computations on the different partitions
where we divided our collections of documents (e.g. an input
text file ”textexample.txt”). The interconnections between
the different procedures of the Spark implementation are
depicted in 2. In the next section, we will evaluate the results
of our implementation.

4. EXPERIMENTS AND RESULTS
In this section, we document the speed and the likelihood

of held-out documents. The purpose of the experiments is
to investigate how our distributed version of LDA on Spark
performs when executed on small and big data.

We report three evaluations : first the perplexity of the
sequential CGS of LDA and the distributed CGS on Spark.

Second, after an investigation of the Spark job in the work-
load, we discuss the percentage of the execution time that
benefits from the improvement of the resources and we com-
pute the speedup. Finally, we discuss the scaling behavior of
our proposition. The results are reported on three datasets
retrieved from the UCI Machine Learning Repository2.

4.1 Data Collection and Processing

Table 1: Description of the four datasets used in experiments

Nips KOS NYT

D 1,500 3430 300,000

V 12,419 6906 102,660

N 2,166,058 467714 99,542,125

We used three datasets from UCI Machine Learning Repos-
itory. Table 1 summarizes the information about the dataset
where D is the number of documents, V is the size of the
vocabulary, and N is the number of tokens.

Nips and KOS are considered as small data, we used them
to report the experimentation on the perplexity between the
sequential CGS and the distributed CGS. The NYT dataset
is considered as a big data set. We used the datasets to
report the experimentation on the speedup and the scaling
behavior.

The downloaded files from UCI are formatted as following
: each line in the file has an ID that corresponds to a docu-
ment, an ID for a word in the vocabulary V and the number
of occurrence of this work in the document. We needed to
transform this format to the following : each line in the in-
put file contains the ID of the document, followed by the ID
of the different words in the vocabulary.

4.2 The Environment
2https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

We run all the experiments on a cluster with 10 nodes
running Spark 1.5.2. Each node has an Intel(R) Core(TM)
i7-3770 CPU @ 3.40GHz (4 cores/8threads), 4 of them have
32GB of RAM and the rest have 16GB of RAM.

4.3 Analyzing the Results
We empirically validate our results by analyzing the com-

puted perplexity and the scaling behavior of our sequential
and distributed version of LDA.

4.3.1 Evaluation with the Perplexity

Figure 3: Perplexity values comparison between the Spark
implementation and the sequential LDA version denoted by
SEQ. The perplexity was computed with different number
of topics for the KOS and NIPS datasets.

Figure 4: Convergence of the perplexity for the KOS and
NIPS datasets compared to the convergence of the Mallet
(MAL) multi-thread paralleling system.

To evaluate the prediction quality of the trained Spark
LDA we measure the log-likelihood of a held-out test set
given an already trained model [18]. This evaluation is called

the test set perplexity and it is defined as

exp(− 1

Ntest
log p(xtest)) (10)

For LDA, the test set is a set of unseen document Wd and
the trained LDA is represented by the distribution of words
φ. We compute the likelihood p(xtest) using S = 10 samples
with 1000 iterations.

p(xtest) =
∏
ij

log
1

S

∑
s

∑
k

θ̂sjkφ̂
s
xijk (11)

θ̂sjk =
α+ ns

jk

Kα+
∑

k n
s
jk

φ̂s
xijk =

β + ns
wk

Wβ + ns
k

Where α = 50/K and β = 0.1.
We used two small datasets from UCI (i.e. KOS and

NIPS) to show that the Spark cluster version of CGS has
the same predictive power as the sequential version. We
computed the test perplexity with different initializations of
the parameters.

In this work, we set aside 25% of the documents in each
corpus as a test set and train on the remaining 75% of doc-
uments. We then compute predictive rank and predictive
likelihood. In Figure 3, we compare the perplexity values
of the sequential LDA version and our distributed LDA ver-
sion on Spark. For this plot, we set different numbers of
topics. We observe that our implementation has the same
predictive power as the sequential version. It has even bet-
ter predictive power for the bigger dataset, in the case the
NIPS dataset. For example, when K = 80 the perplexity is
equal to 1600, compared to 1800 for the sequential version.

For a fixed number of K, we observe in Figure 4 that our
implementation converges to models having the same pre-
dictive power as standard LDA. In this figure, we compare
the accuracy of our implementation to the most used frame-
work for topic modeling, called Mallet. Mallet [11] uses
multi-thread to distributed the computation of the Gibbs
sampling. For this experimentation, we used for our imple-
mentation 12 cores and 12 threads for the Mallet instance
and K = 10.

We note in Figure 4, that our implementation represented
by the circle points converges before the Mallet instance
represented by the triangle points. And this, for the two
datasets NIPS and KOS. Whereas for the smallest dataset,
i.e. KOS, the Mallet has a better accuracy, for the NIPS
our implementation performs better with high convergence
rate.

4.3.2 Speed Up of the Algorithm
We report in this part the speedup of the collapsed Gibbs

sampling (CGS) with a metric which compares the improve-
ment in speed of execution of a task on two similar archi-
tectures with different resources. We compute the speedup
S based on Amdahl law [3] presented in the equation below

S =
1

1− p+ p
s

(12)

where p is the percentage or the portion of the overall task
that benefits from the changes in the resources of the archi-
tecture and s is the number of resources. Here s is equal
to the number of processors. Our speed up experiments is
conducted on the NIPS, KOS, and the large NYT dataset.

Figure 5: Speed up of the spark implementation compared
to the number of processors.

In our algorithm we have split the Gibbs sampling part
into three consecutive parts as shown in the Algorithm 3 :
We broadcast the reduce global counts nwk and ndk then we
compute the distribution for θ and φ. Finally, we compute

the overall speedup by using this equation s =
1

p1
s1

+ p2
s2

+ p3
s3

from Amdahl law.
Figure 5 shows a strong correlation between the speedup

and the size of the dataset. The speedup approaches the
linear case with the NIPS and NYT datasets. For the KOS
dataset, we observe a stable speed up from 60 processors.
This is due to the small number of words in each partition
that have no more effect on the time of the sampling.

4.3.3 Scaling Behavior of the Spark Implementation
Once a program is developed with the Spark syntax and

worked on a small number of cluster nodes, it can be scaled
to an arbitrary number of nodes with no additional develop-
ment effort. The scalability here is the ability to speed up
a task with improving the resources of an architecture of a
particular system.

The main point of this part of experimentation is to quan-
tify the scalability of the overall distributed implementa-
tion on the Spark framework. To this end, we will use the
Universal Scalability Law introduced by Dr. Gunther [7],
to analyze the configuration of the system that matches a
speedup result. The speed up analyzed in section 4.3.2 was
about the sampling time and not the scalability of the over-
all implementation. First, we redefine the speed up factor,
in equation 13.

Sp =
T1

Tp
(13)

Where T1 is the measured time on 1 processor and Tp is
the measured time on p processors. The equation 13 is a
generalization of the Amdahl law and is obtained from the
performance model represented in equation 14.

Sp =
p

1 + σ(p− 1) + κp(p− 1)
(14)

Figure 6: Scaling behavior of the Spark implementation
computed on NIPS KOS and NYT datasets.

where σ represents the degree of contention between dif-
ferent parts of the system and κ represents the delay needed
to keep the system coherent. A delay caused by the distri-
bution of the data on the different partitions.

Figure 6 that describes the scaling behavior of the algo-
rithm, we observe that we have a sublinear speedup for the
KOS data. For the NIPS and NYT datasets, we observe
a super linear speed up and then from 65 processors the
scalability curve cross the linear bound and enter what it
is called a payback region. A detailed explanation of this
phenomenon was studied on a Hadoop cluster and can be
found in this paper [8].

5. RELATED WORKS AND DISCUSSION
To the best of our knowledge, there exist two works similar

to our implementation. The first [15] showed good results
with the same datasets that we used but the authors did
not give any accounts about the global synchronization. For
example, in their implementation, the authors did not syn-
chronize CDK alias the document-topic global counts ma-
trix which important to decide when to stop the sampling
algorithm (i.e. if the CDK does not change through the
iterations). Moreover, the authors did not report the scal-
ing behavior of their implementation, we found that the pa-
per lacked details of implementation (e.g. the broadcasted
counts, the instructions in the map and reduce method), and
we could not find their code.

The second [1] gave more details about the code but the
author did not show any evaluation of the results and the
implementation does not work directly on any text file.

We mention also the work of the Spark community on the
LDA. In their implementation, they use online variational
inference as a technique for learning the LDA models. The
community announced that they are currently working on a
Gibbs sampling version to improve the accuracy of the LDA
package that they propose.

We cite in the following two of the works that did not
implement their proposition in Spark but offered interesting
solutions for the communication and memory management.

Wang et al. [19] implemented LDA using Gibbs sampling.
To overcome the issue of consistent counts the authors used
message passing between the different partitions on the clus-
ter. This IO/Communication dominates the cost in time of
their parallel algorithm which affects the performance of the
implementation. In our work, we don’t have this problem
since we work in memory and we don’t have any persistence
on the disk.

Ahmed et al. [2] tackled the problem of synchronizing the
latent variable of the modeling between different machines.
The authors used a distributed memory system to achieve
consistent counts and the dual decomposition methods to
make local copies of the global variables to obtain consis-
tency in the final counts. The ideas in this work are very
close to the Spark framework.

6. CONCLUSION AND FUTURE WORK
We proposed in this article a distributed version of the

Latent Dirichlet Allocation that was implemented in Spark.
We reduced the I/O communication and the memory con-
ception by tackling the synchronization of the latent vari-
ables of the model. The next step of our work is to improve
our implementation to handle the Medline dataset. We also
intend to implement a streaming distributed version of LDA
where the documents will be processed as they are crawled
from the internet in general or social media in particular (e.g
Twitter).

7. ACKNOWLEDGMENTS
The authors would like to thank the Jhon von Neuman

Institute (VNUHCM), Ho Chi Minh City, Vietnam, for pro-
viding us high-performance computing resources along with
an entire ecosystem of services.

8. REFERENCES
[1] mertterzihan/pymc,

https://github.com/mertterzihan/pymc, 2015-07-02.

[2] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy,
and A. J. Smola. Scalable inference in latent variable
models. In Proceedings of the fifth ACM international
conference on Web search and data mining, pages
123–132. ACM, 2012.

[3] G. M. Amdahl. Validity of the single processor
approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference, AFIPS ’67
(Spring), pages 483–485, New York, NY, USA, 1967.
ACM.

[4] Arvind and D. E. Culler. Dataflow Architectures.
Annual Review of Computer Science, 1(1):225–253,
1986.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
Dirichlet Allocation. J. Mach. Learn. Res.,
3:993–1022, Mar. 2003.

[6] T. L. Griffiths and M. Steyvers. Finding scientific
topics. Proceedings of the National academy of
Sciences of the United States of America, 101(Suppl
1):5228–5235, 2004.

[7] N. J. Gunther. A General Theory of Computational
Scalability Based on Rational Functions.
arXiv:0808.1431 [cs], Aug. 2008. arXiv: 0808.1431.

[8] N. J. Gunther, P. Puglia, and K. Tomasette. Hadoop
superlinear scalability. Communications of the ACM,
58(4):46–55, Mar. 2015.

[9] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques - Adaptive
Computation and Machine Learning. The MIT Press,
2009.

[10] Z. Liu, Y. Zhang, E. Y. Chang, and M. Sun. Plda+:
Parallel latent dirichlet allocation with data placement
and pipeline processing. ACM Transactions on
Intelligent Systems and Technology, special issue on
Large Scale Machine Learning, 2011. Software
available at
https://github.com/openbigdatagroup/plda.

[11] A. K. McCallum. Mallet: A machine learning for
language toolkit, 2002.

[12] Z. Ming, C. Luo, W. Gao, R. Han, Q. Yang, L. Wang,
and J. Zhan. Bdgs: A scalable big data generator suite
in big data benchmarking. In Advancing Big Data
Benchmarks, pages 138–154. Springer, 2014.

[13] D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed algorithms for topic models. The Journal
of Machine Learning Research, 10:1801–1828, 2009.

[14] D. Newman, P. Smyth, M. Welling, and A. U.
Asuncion. Distributed inference for latent dirichlet
allocation. In Advances in neural information
processing systems, pages 1081–1088, 2007.

[15] Z. Qiu, B. Wu, B. Wang, and L. Yu. Gibbs Collapsed
Sampling for Latent Dirichlet Allocation on Spark. In
Journal of Machine Learning Research, pages 17–28,
2014.

[16] T. Salimans, D. P. Kingma, and M. Welling. Markov
Chain Monte Carlo and Variational Inference:
Bridging the Gap. arXiv:1410.6460 [stat], Oct. 2014.
arXiv: 1410.6460.

[17] M. Steyvers and T. Griffiths. Probabilistic topic
models. Handbook of latent semantic analysis,
427(7):424–440, 2007.

[18] H. M. Wallach, I. Murray, R. Salakhutdinov, and
D. Mimno. Evaluation methods for topic models. In
Proceedings of the 26th Annual International
Conference on Machine Learning, pages 1105–1112.
ACM, 2009.

[19] Y. Wang, H. Bai, M. Stanton, W.-Y. Chen, and E. Y.
Chang. Plda: Parallel latent dirichlet allocation for
large-scale applications. In Algorithmic Aspects in
Information and Management, pages 301–314.
Springer, 2009.

[20] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: cluster computing
with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, pages
10–10, 2010.

[21] K. Zhai, J. Boyd-Graber, N. Asadi, and M. L.
Alkhouja. Mr. LDA: A flexible large scale topic
modeling package using variational inference in
mapreduce. In Proceedings of the 21st international
conference on World Wide Web, pages 879–888. ACM,
2012.

